Tech Downloads

Basic Vacuum Practice by Varian

Basic vacuum practices, a primer and basic introduction for vacuum technicians

Read More

Using Vacuum Furnaces to Process 3D-Printed Parts

Vacuum heat treating is a crucial step in the additive manufacturing process cycle to meet required part quality specifications.

Read More

Minimizing Titanium Alpha Case During Vacuum Furnace Heat Treating

A presentation by Solar's Don Jordan given at the ASM's Heat Treat 2015 trade show about reducing alpha case on titanium parts when heat treating in a vacuum furnace.

Read More

Vacuum Furnaces Were Made For Additive Manufacturing

A presentation by Solar's Bob Hill given at the ASM's Heat Treat 2015 trade show about the relationship between vacuum heat treating and additive manufacturing.

Read More

Retiring Paper-based Maintenance Systems in Commercial Heat Treating Shops

A presentation by Solar's Roger Jones given at the ASM's Heat Treat 2015 trade show about transitioning to paperless maintenance logging.

Read More

Enhancing Titanium Friction & Wear Properties

For all of the known benefits of titanium alloys in all sorts of applications, from medical to aerospace to automotive, titanium is also known to exhibit poor tribological properties. That is, it has a high coefficient of friction (COF) when in moving contact with essentially all structural metals, resulting in poor sliding and adhesive wear resistance that leads to failure by galling (cold welding). Because of this, metal-to-metal applications encountering friction and wear considerations require a surface treatment for adequate serviceability. One such treatment is solution nitriding, which is performed in a vacuum furnace using partial pressure nitrogen gas at elevated temperatures in the annealing range. Solution nitriding is classified as a diffusion process where nitrogen gas dissociates and nascent nitrogen is adsorbed and diffused into the titanium matrix. Like other diffusion processes, the depth of the diffusion zone is dependent on the time of the treatment. For alloy Ti-6Al-4V with a core hardness of 30 HRC, Solar Atmospheres has generated hardnesses as high as the mid-60’s to upper-60’s HRC (converted from HV 25gf) at a depth of 0.0076mm (0.0003”), followed by a gradual decrease in hardness to the core over a distance of 0.25mm (0.01”). Shorter cycle times have produced hardnesses in the mid-50’s to high-50’s HRC and shallower total case depths.

Read More

True Cost of Becoming Aerospace Accredited

A presentation by Solar's Bob Hill given at the FNA 2014 trade show about the True Cost of Becoming an Aerospace Accredited Heat Treater.

Read More

Understanding Emissivity and Thermocouple Test Blocks

A recent process development test relating to carburizing illustrated the need to better understand the effect of surface emissivity and the proper use of dummy thermocouple test blocks. The testing involved carburizing areas of a partially copper plated alloy steel part. The copper plating covered areas of the part that were not to be carburized. Since the configuration of the part made it impossible to place a thermocouple within the part, a dummy test block made of carbon steel with the approximate same cross-section was used for the process thermocouple without proper consideration of the surface condition of the test block. Using the test block as the control, carburizing was initiated at the proper temperature based on the test block having reached that temperature. At the completion of the test, the part was examined for carburizing results and found in the non-copper plated areas, the depth of the carburized case to be shallow. This indicated that the cycle performed did not initially hold the part long enough at the correct temperature prior to carburizing. This resulted in the conclusion that when using dummy test blocks for controlling process times and temperatures, many factors must be considered including surface emissivity.

Read More